

pymc-learn: Practical Probabilistic Machine Learning in Python

[image: Pymc-Learn logo]
[image: Travis] [https://travis-ci.com/pymc-learn/pymc-learn] [image: Coverage] [https://coveralls.io/github/pymc-learn/pymc-learn?branch=master] [image: Documentation Status] [https://pymc-learn.readthedocs.io/en/latest/?badge=latest] [image: Hex.pm] [https://github.com/pymc-learn/pymc-learn/blob/master/LICENSE] [image: Pypi] [https://badge.fury.io/py/pymc-learn] [image: Binder] [https://mybinder.org/v2/gh/pymc-learn/pymc-learn/master?filepath=%2Fdocs%2Fnotebooks?urlpath=lab]

Contents:

	Github repo [https://github.com/pymc-learn/pymc-learn]

	What is pymc-learn?

	Quick Install

	Quick Start

	Index

What is pymc-learn?

pymc-learn is a library for practical probabilistic
machine learning in Python.

It provides a variety of state-of-the art probabilistic models for supervised
and unsupervised machine learning. It is inspired by
scikit-learn [http://scikit-learn.org] and focuses on bringing probabilistic
machine learning to non-specialists. It uses a syntax that mimics scikit-learn.
Emphasis is put on ease of use, productivity, flexibility, performance,
documentation, and an API consistent with scikit-learn. It depends on scikit-learn
and PyMC3 [https://docs.pymc.io/] and is distributed under the new BSD-3 license,
encouraging its use in both academia and industry.

Users can now have calibrated quantities of uncertainty in their models
using powerful inference algorithms – such as MCMC or Variational inference –
provided by PyMC3 [https://docs.pymc.io/].
See Why pymc-learn? for a more detailed description of why pymc-learn was
created.

Note

pymc-learn leverages and extends the Base template provided by the
PyMC3 Models project: https://github.com/parsing-science/pymc3_models

Transitioning from PyMC3 to PyMC4

 .@pymc_learn has been following closely the development of #PyMC4 with the aim of switching its backend from #PyMC3 to PyMC4 as the latter grows to maturity. Core devs are invited. Here's the tentative roadmap for PyMC4: https://t.co/Kwjkykqzup cc @pymc_devs https://t.co/Ze0tyPsIGH

 Install pymc-learn

Install pymc-learn

pymc-learn requires a working Python interpreter (2.7 or 3.3+).
It is recommend installing Python and key numerical libraries using the Anaconda Distribution [https://www.continuum.io/downloads],
which has one-click installers available on all major platforms.

Assuming a standard Python environment is installed on your machine
(including pip), pymc-learn itself can be installed in one line using pip:

You can install pymc-learn from PyPi using pip as follows:

pip install pymc-learn

Or from source as follows:

pip install git+https://github.com/pymc-learn/pymc-learn

Caution

pymc-learn is under heavy development.

This also installs required dependencies including Theano.
For alternative Theano installations (e.g., gpu), please see the
instructions on the main Theano webpage [http://deeplearning.net/software/theano/].

Transitioning from PyMC3 to PyMC4

 .@pymc_learn has been following closely the development of #PyMC4 with the aim of switching its backend from #PyMC3 to PyMC4 as the latter grows to maturity. Core devs are invited. Here's the tentative roadmap for PyMC4: https://t.co/Kwjkykqzup cc @pymc_devs https://t.co/Ze0tyPsIGH

 Community

Community

pymc-learn is used and developed by individuals at some institutions.

Discussion

Conversation happens in the following places:

	Usage questions are directed to Stack Overflow with the #pymc_learn tag [http://stackoverflow.com/questions/tagged/pymc-learn].
Pymc-learn developers monitor this tag and get e-mails whenever a question is
asked.

	Bug reports and feature requests are managed on the GitHub issue
tracker [https://github.com/pymc-learn/pymc-learn/issues/]

Asking for help

We welcome usage questions and bug reports from all users, even those who are
new to using the project. There are a few things you can do to improve the
likelihood of quickly getting a good answer.

	Ask questions in the right place: We strongly prefer the use
of StackOverflow or Github issues over Twitter. Github and
StackOverflow are more easily searchable by future users and so is more
efficient for everyone’s time.

If you have a general question about how something should work or
want best practices then use Stack Overflow. If you think you have found a
bug then use GitHub.

	Ask only in one place: Please restrict yourself to posting your
question in only one place (likely Stack Overflow or Github) and don’t post
in both.

	Create a minimal example: It is ideal to create minimal, complete,
verifiable examples [https://stackoverflow.com/help/mcve]. This
significantly reduces the time that answerers spend understanding your
situation and so results in higher quality answers more quickly.

See also this blogpost [http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports]
about crafting minimal bug reports. These have a much higher likelihood of
being answered.

 Why pymc-learn?

Why pymc-learn?

There are several probabilistic machine learning frameworks available today.
Why use pymc-learn rather than any other? Here are some of the reasons why
you may be compelled to use pymc-learn.

pymc-learn prioritizes user experience

	Familiarity: pymc-learn mimics the syntax of scikit-learn [https://scikit-learn.org] – a popular Python library for machine learning – which has a consistent & simple API, and is very user friendly.

	Ease of use: This makes pymc-learn easy to learn and use for first-time users.

	Productivity: For scikit-learn users, you don’t have to completely rewrite your code. Your code looks almost the same. You are more productive, allowing you to try more ideas faster.

from sklearn.linear_model \ from pmlearn.linear_model \
 import LinearRegression import LinearRegression
lr = LinearRegression() lr = LinearRegression()
lr.fit(X, y) lr.fit(X, y)

	Flexibility: This ease of use does not come at the cost of reduced flexibility. Given that pymc-learn integrates with PyMC3 [https://docs.pymc.io], it enables you to implement anything you could have built in the base language.

	Performance. The primary inference algorithm is gradient-based automatic differentiation variational inference (ADVI) (Kucukelbir et al., 2017), which estimates a divergence measure between approximate and true posterior distributions. Pymc-learn scales to complex, high-dimensional models thanks to GPU-accelerated tensor math and reverse-mode automatic differentiation via Theano (Theano Development Team, 2016), and it scales to large datasets thanks to estimates computed over mini-batches of data in ADVI.

Why do we need pymc-learn?

Currently, there is a growing need for principled machine learning approaches by
non-specialists in many fields including the pure sciences (e.g. biology, physics,
chemistry), the applied sciences (e.g. political science, biostatistics),
engineering (e.g. transportation, mechanical), medicine (e.g. medical imaging),
the arts (e.g visual art), and software industries.

This has lead to increased adoption of probabilistic modeling. This trend is
attributed in part to three major factors:

	the need for transparent models with calibrated quantities of uncertainty, i.e. “models should know when they don’t know”,

	the ever-increasing number of promising results achieved on a variety of fundamental problems in AI (Ghahramani, 2015), and

	the emergency of probabilistic programming languages (PPLs) that provide a fexible framework to build richly structured probabilistic models that incorporate domain knowledge.

However, usage of PPLs requires a specialized understanding of probability
theory, probabilistic graphical modeling, and probabilistic inference. Some PPLs
also require a good command of software coding. These requirements make it
difficult for non-specialists to adopt and apply probabilistic machine learning
to their domain problems.

Pymc-learn seeks to address these challenges by providing state-of-the art
implementations of several popular probabilistic machine learning models.
It is inspired by scikit-learn (Pedregosa et al., 2011) and focuses on
bringing probabilistic machine learning to non-specialists. It puts emphasis
on:

	ease of use,

	productivity,

	fexibility,

	performance,

	documentation, and

	an API consistent with scikit-learn.

The underlying probabilistic models are built using pymc3 (Salvatier et al., 2016).

Transitioning from PyMC3 to PyMC4

 .@pymc_learn has been following closely the development of #PyMC4 with the aim of switching its backend from #PyMC3 to PyMC4 as the latter grows to maturity. Core devs are invited. Here's the tentative roadmap for PyMC4: https://t.co/Kwjkykqzup cc @pymc_devs https://t.co/Ze0tyPsIGH

 User guide: contents

User Guide

	1. Supervised learning
	1.1. Generalized Linear Models
	1.1.1. Bayesian Linear Regression

	1.1.2. Bayesian Logistic regression

	1.2. Gaussian Processes
	1.2.1. Gaussian Process Regression (GPR)

	1.2.2. Kernels for Gaussian Processes
	1.2.2.1. References

	1.3. Naive Bayes
	1.3.1. Gaussian Naive Bayes

	1.4. Neural network models (supervised)
	1.4.1. Multi-layer Perceptron

	1.4.2. Classification

	2. Unsupervised learning
	2.1. Gaussian mixture models
	2.1.1. Gaussian Mixture

	2.1.2. The Dirichlet Process

 1. Supervised learning

1. Supervised learning

	1.1. Generalized Linear Models
	1.1.1. Bayesian Linear Regression

	1.1.2. Bayesian Logistic regression

	1.2. Gaussian Processes
	1.2.1. Gaussian Process Regression (GPR)

	1.2.2. Kernels for Gaussian Processes
	1.2.2.1. References

	1.3. Naive Bayes
	1.3.1. Gaussian Naive Bayes

	1.4. Neural network models (supervised)
	1.4.1. Multi-layer Perceptron

	1.4.2. Classification

 1.1. Generalized Linear Models

1.1. Generalized Linear Models

The following are a set of methods intended for regression in which
the target value is expected to be a linear combination of the input
variables. In mathematical notion, if \(\hat{y}\) is the predicted
value.

\[\hat{y}(\beta, x) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p\]

Where \(\beta = (\beta_1,
..., \beta_p)\) are the coefficients and \(\beta_0\) is the y-intercept.

To perform classification with generalized linear models, see
Bayesian Logistic regression.

1.1.1. Bayesian Linear Regression

To obtain a fully probabilistic model, the output \(y\) is assumed
to be Gaussian distributed around \(X w\):

\[p(y|X,w,\alpha) = \mathcal{N}(y|X w,\alpha)\]

Alpha is again treated as a random variable that is to be estimated from the
data.

References

	A good introduction to Bayesian methods is given in C. Bishop: Pattern
Recognition and Machine learning

	Original Algorithm is detailed in the book Bayesian learning for neural
networks by Radford M. Neal

1.1.2. Bayesian Logistic regression

Bayesian Logistic regression, despite its name, is a linear model for
classification rather than regression. Logistic regression is also
known in the literature as logit regression, maximum-entropy classification (MaxEnt)
or the log-linear classifier. In this model, the probabilities describing the
possible outcomes of a single trial are modeled
using a logistic function [https://en.wikipedia.org/wiki/Logistic_function].

The implementation of logistic regression in pymc-learn can be accessed from
class LogisticRegression.

 1.2. Gaussian Processes

1.2. Gaussian Processes

Gaussian Processes (GP) are a generic supervised learning method designed
to solve regression and probabilistic classification problems.

1.2.1. Gaussian Process Regression (GPR)

The GaussianProcessRegressor implements Gaussian processes (GP) for
regression purposes. For this, the prior of the GP needs to be specified. The
prior mean is assumed to be constant and zero (for normalize_y=False) or the
training data’s mean (for normalize_y=True). The prior’s
covariance is specified by a passing a kernel object.

1.2.2. Kernels for Gaussian Processes

Kernels (also called “covariance functions” in the context of GPs) are a crucial
ingredient of GPs which determine the shape of prior and posterior of the GP.
They encode the assumptions on the function being learned by defining the “similarity”
of two data points combined with the assumption that similar data points should
have similar target values. Two categories of kernels can be distinguished:
stationary kernels depend only on the distance of two data points and not on their
absolute values \(k(x_i, x_j)= k(d(x_i, x_j))\) and are thus invariant to
translations in the input space, while non-stationary kernels
depend also on the specific values of the data points. Stationary kernels can further
be subdivided into isotropic and anisotropic kernels, where isotropic kernels are
also invariant to rotations in the input space. For more details, we refer to
Chapter 4 of [RW2006].

1.2.2.1. References

	RW2006

	Carl Eduard Rasmussen and Christopher K.I. Williams, “Gaussian Processes for Machine Learning”, MIT Press 2006, Link to an official complete PDF version of the book here [http://www.gaussianprocess.org/gpml/chapters/RW.pdf] .

 1.3. Naive Bayes

1.3. Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms
based on applying Bayes’ theorem with the “naive” assumption of
conditional independence between every pair of features given the
value of the class variable. Bayes’ theorem states the following
relationship, given class variable \(y\) and dependent feature
vector \(x_1\) through \(x_n\), :

\[P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots x_n \mid y)}
 {P(x_1, \dots, x_n)}\]

Using the naive conditional independence assumption that

\[P(x_i | y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i | y),\]

for all \(i\), this relationship is simplified to

\[P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^{n} P(x_i \mid y)}
 {P(x_1, \dots, x_n)}\]

Since \(P(x_1, \dots, x_n)\) is constant given the input,
we can use the following classification rule:

\[\begin{align}\begin{aligned}P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^{n} P(x_i \mid y)\\\Downarrow\\\hat{y} = \arg\max_y P(y) \prod_{i=1}^{n} P(x_i \mid y),\end{aligned}\end{align} \]

and we can use Maximum A Posteriori (MAP) estimation to estimate
\(P(y)\) and \(P(x_i \mid y)\);
the former is then the relative frequency of class \(y\)
in the training set.

The different naive Bayes classifiers differ mainly by the assumptions they
make regarding the distribution of \(P(x_i \mid y)\).

In spite of their apparently over-simplified assumptions, naive Bayes
classifiers have worked quite well in many real-world situations, famously
document classification and spam filtering. They require a small amount
of training data to estimate the necessary parameters. (For theoretical
reasons why naive Bayes works well, and on which types of data it does, see
the references below.)

Naive Bayes learners and classifiers can be extremely fast compared to more
sophisticated methods.
The decoupling of the class conditional feature distributions means that each
distribution can be independently estimated as a one dimensional distribution.
This in turn helps to alleviate problems stemming from the curse of
dimensionality.

On the flip side, although naive Bayes is known as a decent classifier,
it is known to be a bad estimator, so the probability outputs from
predict_proba are not to be taken too seriously.

References:

	H. Zhang (2004). The optimality of Naive Bayes. [http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf]
Proc. FLAIRS.

1.3.1. Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for
classification. The likelihood of the features is assumed to be Gaussian:

\[P(x_i \mid y) &= \frac{1}{\sqrt{2\pi\sigma^2_y}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma^2_y}\right)\]

The parameters \(\sigma_y\) and \(\mu_y\)
are estimated using maximum likelihood.

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from pmlearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
>>> print("Number of mislabeled points out of a total %d points : %d"
... % (iris.data.shape[0],(iris.target != y_pred).sum()))
Number of mislabeled points out of a total 150 points : 6

 1.4. Neural network models (supervised)

1.4. Neural network models (supervised)

Warning

This implementation is not intended for large-scale applications. In particular,
scikit-learn offers no GPU support. For much faster, GPU-based implementations,
as well as frameworks offering much more flexibility to build deep learning
architectures, see related_projects.

1.4.1. Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns
a function \(f(\cdot): R^m \rightarrow R^o\) by training on a dataset,
where \(m\) is the number of dimensions for input and \(o\) is the
number of dimensions for output. Given a set of features \(X = {x_1, x_2, ..., x_m}\)
and a target \(y\), it can learn a non-linear function approximator for either
classification or regression.

1.4.2. Classification

Class MLPClassifier implements a multi-layer perceptron (MLP) algorithm
that trains using Backpropagation [http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm].

MLP trains on two arrays: array X of size (n_samples, n_features), which holds
the training samples represented as floating point feature vectors; and array
y of size (n_samples,), which holds the target values (class labels) for the
training samples:

>>> from pmlearn.neural_network import MLPClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = MLPClassifier()
...
>>> clf.fit(X, y)
>>> clf.predict([[2., 2.], [-1., -2.]])
array([1, 0])

References:

	“Learning representations by back-propagating errors.” [http://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf]
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams.

	“Stochastic Gradient Descent” [http://leon.bottou.org/projects/sgd] L. Bottou - Website, 2010.

	“Backpropagation” [http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm]
Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen - Website, 2011.

	“Efficient BackProp” [http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf]
Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks
of the Trade 1998.

	“Adam: A method for stochastic optimization.” [http://arxiv.org/pdf/1412.6980v8.pdf]
Kingma, Diederik, and Jimmy Ba. arXiv preprint arXiv:1412.6980 (2014).

 2. Unsupervised learning

2. Unsupervised learning

	2.1. Gaussian mixture models
	2.1.1. Gaussian Mixture

	2.1.2. The Dirichlet Process

 2.1. Gaussian mixture models

2.1. Gaussian mixture models

pmlearn.mixture is a package which enables one to learn
Gaussian Mixture Models.

A Gaussian mixture model is a probabilistic model that assumes all the
data points are generated from a mixture of a finite number of
Gaussian distributions with unknown parameters.

pymc-learn implements different classes to estimate Gaussian
mixture models, that correspond to different estimation strategies,
detailed below.

2.1.1. Gaussian Mixture

A GaussianMixture.fit() method is provided that learns a Gaussian
Mixture Model from train data. Given test data, it can assign to each
sample the Gaussian it mostly probably belong to using
the GaussianMixture.predict() method.

2.1.2. The Dirichlet Process

Here we describe variational inference algorithms on Dirichlet process
mixture. The Dirichlet process is a prior probability distribution on
clusterings with an infinite, unbounded, number of partitions.
Variational techniques let us incorporate this prior structure on
Gaussian mixture models at almost no penalty in inference time, comparing
with a finite Gaussian mixture model.

 Regression

Regression

	Linear Regression

	Logistic Regression

	Hierachical Logistic Regression

	Gaussian Process Regression

	Student’s T Process Regression

	Sparse Gaussian Process Regression

	Multilayer Perceptron Classifier

 Linear Regression

Linear Regression

Let’s set some setting for this Jupyter Notebook.

In [1]:

%matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['THEANO_FLAGS'] = 'device=cpu'

import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(12345)
rc = {'xtick.labelsize': 20, 'ytick.labelsize': 20, 'axes.labelsize': 20, 'font.size': 20,
 'legend.fontsize': 12.0, 'axes.titlesize': 10, "figure.figsize": [12, 6]}
sns.set(rc = rc)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Now, let’s import the LinearRegression model from the pymc-learn
package.

In [2]:

import pmlearn
from pmlearn.linear_model import LinearRegression
print('Running on pymc-learn v{}'.format(pmlearn.__version__))

Running on pymc-learn v0.0.1.rc0

Step 1: Prepare the data

Generate synthetic data.

In [3]:

X = np.random.randn(1000, 1)
noise = 2 * np.random.randn(1000, 1)
slope = 4
intercept = 3
y = slope * X + intercept + noise
y = np.squeeze(y)

fig, ax = plt.subplots()
ax.scatter(X, y);

[image: ../_images/notebooks_LinearRegression_6_0.png]

In [4]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Step 2: Instantiate a model

In [5]:

model = LinearRegression()

Step 3: Perform Inference

In [6]:

model.fit(X_train, y_train)

Average Loss = 1,512: 14%|█▍ | 27662/200000 [00:14<01:29, 1923.95it/s]
Convergence archived at 27700
Interrupted at 27,699 [13%]: Average Loss = 3,774.9

Out[6]:

LinearRegression()

Step 4: Diagnose convergence

In [7]:

model.plot_elbo()

[image: ../_images/notebooks_LinearRegression_13_0.png]

In [8]:

pm.traceplot(model.trace);

[image: ../_images/notebooks_LinearRegression_14_0.png]

In [9]:

pm.traceplot(model.trace, lines = {"betas": slope,
 "alpha": intercept,
 "s": 2},
 varnames=["betas", "alpha", "s"]);

[image: ../_images/notebooks_LinearRegression_15_0.png]

In [10]:

pm.forestplot(model.trace, varnames=["betas", "alpha", "s"]);

[image: ../_images/notebooks_LinearRegression_16_0.png]

Step 5: Critize the model

In [11]:

pm.summary(model.trace, varnames=["betas", "alpha", "s"])

Out[11]:

 Logistic Regression

Logistic Regression

Let’s set some setting for this Jupyter Notebook.

In [1]:

%matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['THEANO_FLAGS'] = 'device=cpu'

import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(12345)
rc = {'xtick.labelsize': 20, 'ytick.labelsize': 20, 'axes.labelsize': 20, 'font.size': 20,
 'legend.fontsize': 12.0, 'axes.titlesize': 10, "figure.figsize": [12, 6]}
sns.set(rc = rc)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Now, let’s import the LogisticRegression model from the
pymc-learn package.

In [2]:

import pmlearn
from pmlearn.linear_model import LogisticRegression
print('Running on pymc-learn v{}'.format(pmlearn.__version__))

Running on pymc-learn v0.0.1.rc0

Step 1: Prepare the data

Generate synthetic data.

In [3]:

num_pred = 2
num_samples = 700000
num_categories = 2

In [4]:

alphas = 5 * np.random.randn(num_categories) + 5 # mu_alpha = sigma_alpha = 5
betas = 10 * np.random.randn(num_categories, num_pred) + 10 # mu_beta = sigma_beta = 10

In [5]:

alphas

Out[5]:

array([3.9764617 , 7.39471669])

In [6]:

betas

Out[6]:

array([[4.80561285, 4.44269696],
 [29.65780573, 23.93405833]])

In [7]:

def numpy_invlogit(x):
 return 1 / (1 + np.exp(-x))

In [8]:

x_a = np.random.randn(num_samples, num_pred)
y_a = np.random.binomial(1, numpy_invlogit(alphas[0] + np.sum(betas[0] * x_a, 1)))
x_b = np.random.randn(num_samples, num_pred)
y_b = np.random.binomial(1, numpy_invlogit(alphas[1] + np.sum(betas[1] * x_b, 1)))

X = np.concatenate([x_a, x_b])
y = np.concatenate([y_a, y_b])
cats = np.concatenate([
 np.zeros(num_samples, dtype=np.int),
 np.ones(num_samples, dtype=np.int)
])

In [9]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test, cats_train, cats_test = train_test_split(X, y, cats, test_size=0.3)

Step 2: Instantiate a model

In [10]:

model = LogisticRegression()

Step 3: Perform Inference

In [11]:

model.fit(X_train, y_train, cats_train, minibatch_size=2000, inference_args={'n': 60000})

Average Loss = 249.45: 100%|██████████| 60000/60000 [01:13<00:00, 814.48it/s]
Finished [100%]: Average Loss = 249.5

Out[11]:

LogisticRegression()

Step 4: Diagnose convergence

In [12]:

model.plot_elbo()

[image: ../_images/notebooks_LogisticRegression_18_0.png]

In [13]:

pm.traceplot(model.trace);

[image: ../_images/notebooks_LogisticRegression_19_0.png]

In [14]:

pm.traceplot(model.trace, lines = {"beta": betas,
 "alpha": alphas},
 varnames=["beta", "alpha"]);

[image: ../_images/notebooks_LogisticRegression_20_0.png]

In [15]:

pm.forestplot(model.trace, varnames=["beta", "alpha"]);

[image: ../_images/notebooks_LogisticRegression_21_0.png]

Step 5: Critize the model

In [16]:

pm.summary(model.trace)

Out[16]:

 Hierachical Logistic Regression

Hierachical Logistic Regression

Let’s set some setting for this Jupyter Notebook.

In [3]:

%matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['THEANO_FLAGS'] = 'device=cpu'

import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(12345)
rc = {'xtick.labelsize': 20, 'ytick.labelsize': 20, 'axes.labelsize': 20, 'font.size': 20,
 'legend.fontsize': 12.0, 'axes.titlesize': 10, "figure.figsize": [12, 6]}
sns.set(rc = rc)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Now, let’s import the HierarchicalLogisticRegression model from the
pymc-learn package.

In [4]:

import pmlearn
from pmlearn.linear_model import HierarchicalLogisticRegression
print('Running on pymc-learn v{}'.format(pmlearn.__version__))

Running on pymc-learn v0.0.1.rc0

Step 1: Prepare the data

Generate synthetic data.

In [5]:

num_pred = 2
num_samples = 700000
num_categories = 2

In [6]:

alphas = 5 * np.random.randn(num_categories) + 5 # mu_alpha = sigma_alpha = 5
betas = 10 * np.random.randn(num_categories, num_pred) + 10 # mu_beta = sigma_beta = 10

In [7]:

alphas

Out[7]:

array([3.9764617 , 7.39471669])

In [8]:

betas

Out[8]:

array([[4.80561285, 4.44269696],
 [29.65780573, 23.93405833]])

In [9]:

def numpy_invlogit(x):
 return 1 / (1 + np.exp(-x))

In [10]:

x_a = np.random.randn(num_samples, num_pred)
y_a = np.random.binomial(1, numpy_invlogit(alphas[0] + np.sum(betas[0] * x_a, 1)))
x_b = np.random.randn(num_samples, num_pred)
y_b = np.random.binomial(1, numpy_invlogit(alphas[1] + np.sum(betas[1] * x_b, 1)))

X = np.concatenate([x_a, x_b])
y = np.concatenate([y_a, y_b])
cats = np.concatenate([
 np.zeros(num_samples, dtype=np.int),
 np.ones(num_samples, dtype=np.int)
])

In [11]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test, cats_train, cats_test = train_test_split(X, y, cats, test_size=0.3)

Step 2: Instantiate a model

In [12]:

model = HierarchicalLogisticRegression()

Step 3: Perform Inference

In [13]:

model.fit(X_train, y_train, cats_train, minibatch_size=2000, inference_args={'n': 60000})

Average Loss = 246.46: 100%|██████████| 60000/60000 [02:19<00:00, 429.21it/s]
Finished [100%]: Average Loss = 246.56

Out[13]:

HierarchicalLogisticRegression()

Step 4: Diagnose convergence

In [14]:

model.plot_elbo()

[image: ../_images/notebooks_HierarchicalLogisticRegression_18_0.png]

In [15]:

pm.traceplot(model.trace);

[image: ../_images/notebooks_HierarchicalLogisticRegression_19_0.png]

In [16]:

pm.traceplot(model.trace, lines = {"beta": betas,
 "alpha": alphas},
 varnames=["beta", "alpha"]);

[image: ../_images/notebooks_HierarchicalLogisticRegression_20_0.png]

In [17]:

pm.forestplot(model.trace, varnames=["beta", "alpha"]);

[image: ../_images/notebooks_HierarchicalLogisticRegression_21_0.png]

Step 5: Critize the model

In [18]:

pm.summary(model.trace)

Out[18]:

 Gaussian Process Regression

Gaussian Process Regression

Let’s set some setting for this Jupyter Notebook.

In [1]:

%matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['THEANO_FLAGS'] = 'device=cpu'

import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(12345)
rc = {'xtick.labelsize': 20, 'ytick.labelsize': 20, 'axes.labelsize': 20, 'font.size': 20,
 'legend.fontsize': 12.0, 'axes.titlesize': 10, "figure.figsize": [12, 6]}
sns.set(rc = rc)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Now, let’s import the GaussianProcessRegression algorithm from the
pymc-learn package.

In [2]:

import pmlearn
from pmlearn.gaussian_process import GaussianProcessRegressor
print('Running on pymc-learn v{}'.format(pmlearn.__version__))

Running on pymc-learn v0.0.1.rc0

Step 1: Prepare the data

Generate synthetic data.

In [3]:

n = 150 # The number of data points
X = np.linspace(start = 0, stop = 10, num = n)[:, None] # The inputs to the GP, they must be arranged as a column vector

Define the true covariance function and its parameters
length_scale_true = 1.0
signal_variance_true = 3.0
cov_func = signal_variance_true**2 * pm.gp.cov.ExpQuad(1, length_scale_true)

A mean function that is zero everywhere
mean_func = pm.gp.mean.Zero()

The latent function values are one sample from a multivariate normal
Note that we have to call `eval()` because PyMC3 built on top of Theano
f_true = np.random.multivariate_normal(mean_func(X).eval(),
 cov_func(X).eval() + 1e-8*np.eye(n), 1).flatten()

The observed data is the latent function plus a small amount of Gaussian distributed noise
The standard deviation of the noise is `sigma`
noise_variance_true = 2.0
y = f_true + noise_variance_true * np.random.randn(n)

Plot the data and the unobserved latent function
fig = plt.figure()
ax = fig.gca()
ax.plot(X, f_true, "dodgerblue", lw=3, label="True f");
ax.plot(X, y, 'ok', ms=3, label="Data");
ax.set_xlabel("X"); ax.set_ylabel("y"); plt.legend();

[image: ../_images/notebooks_GaussianProcessRegression_6_0.png]

In [4]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Step 2: Instantiate a model

In [5]:

model = GaussianProcessRegressor()

In [6]:

model?

 Student’s T Process Regression

Student’s T Process Regression

Let’s set some setting for this Jupyter Notebook.

In [2]:

%matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['THEANO_FLAGS'] = 'device=cpu'

import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(12345)
rc = {'xtick.labelsize': 20, 'ytick.labelsize': 20, 'axes.labelsize': 20, 'font.size': 20,
 'legend.fontsize': 12.0, 'axes.titlesize': 10, "figure.figsize": [12, 6]}
sns.set(rc = rc)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Now, let’s import the StudentsTProcessRegression algorithm from the
pymc-learn package.

In [3]:

import pmlearn
from pmlearn.gaussian_process import StudentsTProcessRegressor
print('Running on pymc-learn v{}'.format(pmlearn.__version__))

Running on pymc-learn v0.0.1.rc0

Step 1: Prepare the data

Generate synthetic data.

In [4]:

n = 150 # The number of data points
X = np.linspace(start = 0, stop = 10, num = n)[:, None] # The inputs to the GP, they must be arranged as a column vector

Define the true covariance function and its parameters
length_scale_true = 1.0
signal_variance_true = 3.0
cov_func = signal_variance_true**2 * pm.gp.cov.ExpQuad(1, length_scale_true)

A mean function that is zero everywhere
mean_func = pm.gp.mean.Zero()

The latent function values are one sample from a multivariate normal
Note that we have to call `eval()` because PyMC3 built on top of Theano
f_true = np.random.multivariate_normal(mean_func(X).eval(),
 cov_func(X).eval() + 1e-8*np.eye(n), 1).flatten()

The observed data is the latent function plus a small amount of T distributed noise
The standard deviation of the noise is `sigma`, and the degrees of freedom is `nu`
noise_variance_true = 2.0
degrees_of_freedom_true = 3.0
y = f_true + noise_variance_true * np.random.standard_t(degrees_of_freedom_true, size=n)

Plot the data and the unobserved latent function
fig, ax = plt.subplots()
ax.plot(X, f_true, "dodgerblue", lw=3, label="True f");
ax.plot(X, y, 'ok', ms=3, label="Data");
ax.set_xlabel("X"); ax.set_ylabel("y"); plt.legend();

[image: ../_images/notebooks_StudentsTProcessRegression_6_0.png]

In [5]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Step 2: Instantiate a model

In [6]:

model = StudentsTProcessRegressor()

Step 3: Perform Inference

In [7]:

model.fit(X_train, y_train)

Average Loss = 303.15: 100%|██████████| 200000/200000 [06:37<00:00, 503.33it/s]
Finished [100%]: Average Loss = 303.15

Out[7]:

StudentsTProcessRegressor(prior_mean=0.0)

Step 4: Diagnose convergence

In [8]:

model.plot_elbo()

[image: ../_images/notebooks_StudentsTProcessRegression_13_0.png]

In [9]:

pm.traceplot(model.trace);

[image: ../_images/notebooks_StudentsTProcessRegression_14_0.png]

In [10]:

pm.traceplot(model.trace, lines = {"signal_variance": signal_variance_true,
 "noise_variance": noise_variance_true,
 "length_scale": length_scale_true,
 "degrees_of_freedom": degrees_of_freedom_true},
 varnames=["signal_variance", "noise_variance", "length_scale", "degrees_of_freedom"]);

[image: ../_images/notebooks_StudentsTProcessRegression_15_0.png]

In [11]:

pm.forestplot(model.trace, varnames=["signal_variance", "noise_variance", "length_scale", "degrees_of_freedom"]);

[image: ../_images/notebooks_StudentsTProcessRegression_16_0.png]

Step 5: Criticize the model

In [12]:

pm.summary(model.trace, varnames=["signal_variance", "noise_variance", "length_scale", "degrees_of_freedom"])

Out[12]:

 Sparse Gaussian Process Regression

Sparse Gaussian Process Regression

Let’s set some setting for this Jupyter Notebook.

In [2]:

%matplotlib inline
from warnings import filterwarnings
filterwarnings("ignore")
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['THEANO_FLAGS'] = 'device=cpu'

import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(12345)
rc = {'xtick.labelsize': 20, 'ytick.labelsize': 20, 'axes.labelsize': 20, 'font.size': 20,
 'legend.fontsize': 12.0, 'axes.titlesize': 10, "figure.figsize": [12, 6]}
sns.set(rc = rc)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Now, let’s import the SparseGaussianProcessRegression algorithm from
the pymc-learn package.

In [3]:

import pmlearn
from pmlearn.gaussian_process import SparseGaussianProcessRegressor
print('Running on pymc-learn v{}'.format(pmlearn.__version__))

Running on pymc-learn v0.0.1.rc0

Step 1: Prepare the data

Generate synthetic data.

In [4]:

n = 150 # The number of data points
X = np.linspace(start = 0, stop = 10, num = n)[:, None] # The inputs to the GP, they must be arranged as a column vector

Define the true covariance function and its parameters
length_scale_true = 1.0
signal_variance_true = 3.0
cov_func = signal_variance_true**2 * pm.gp.cov.ExpQuad(1, length_scale_true)

A mean function that is zero everywhere
mean_func = pm.gp.mean.Constant(10)

The latent function values are one sample from a multivariate normal
Note that we have to call `eval()` because PyMC3 built on top of Theano
f_true = np.random.multivariate_normal(mean_func(X).eval(),
 cov_func(X).eval() + 1e-8*np.eye(n), 1).flatten()

The observed data is the latent function plus a small amount of Gaussian distributed noise
The standard deviation of the noise is `sigma`
noise_variance_true = 2.0
y = f_true + noise_variance_true * np.random.randn(n)

Plot the data and the unobserved latent function
fig = plt.figure(figsize=(12,5))
ax = fig.gca()
ax.plot(X, f_true, "dodgerblue", lw=3, label="True f");
ax.plot(X, y, 'ok', ms=3, label="Data");
ax.set_xlabel("X"); ax.set_ylabel("y"); plt.legend();

[image: ../_images/notebooks_SparseGaussianProcessRegression_6_0.png]

In [5]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Step 2: Instantiate a model

In [6]:

model = SparseGaussianProcessRegressor()

Step 3: Perform Inference

In [7]:

model.fit(X_train, y_train)

Average Loss = -4,669.3: 100%|██████████| 200000/200000 [06:12<00:00, 536.41it/s]
Finished [100%]: Average Loss = -4,669.6

Out[7]:

SparseGaussianProcessRegressor(prior_mean=0.0)

Step 4: Diagnose convergence

In [8]:

model.plot_elbo()

[image: ../_images/notebooks_SparseGaussianProcessRegression_13_0.png]

In [8]:

pm.traceplot(model.trace);

[image: ../_images/notebooks_SparseGaussianProcessRegression_14_0.png]

In [9]:

pm.traceplot(model.trace, lines = {"signal_variance": signal_variance_true,
 "noise_variance": noise_variance_true,
 "length_scale": length_scale_true},
 varnames=["signal_variance", "noise_variance", "length_scale"]);

[image: ../_images/notebooks_SparseGaussianProcessRegression_15_0.png]

In [11]:

pm.fore