• Get Started
    • Install
    • Why Pymc-learn?
    • Examples
    • Try Online
  • Models
    • Regression
    • Classification
    • Clustering
    • Neural Networks
  • Community
    • Ask for Help
    • Github
    • Stack Overflow
    • Twitter
    • Developer Blog
pymc-learn
latest

Getting Started

  • Install pymc-learn
  • Community
  • Why pymc-learn?

User Guide

  • User Guide
    • 1. Supervised learning
    • 2. Unsupervised learning

Examples

  • Regression
  • Classification
  • Mixture Models
  • Bayesian Neural Networks

API Reference

  • API

Help & reference

  • Contributing
  • Community
  • Changelog
  • Citations
pymc-learn
  • Docs »
  • User guide: contents
  • Edit on GitHub

User GuideΒΆ

  • 1. Supervised learning
    • 1.1. Generalized Linear Models
      • 1.1.1. Bayesian Linear Regression
      • 1.1.2. Bayesian Logistic regression
    • 1.2. Gaussian Processes
      • 1.2.1. Gaussian Process Regression (GPR)
      • 1.2.2. Kernels for Gaussian Processes
        • 1.2.2.1. References
    • 1.3. Naive Bayes
      • 1.3.1. Gaussian Naive Bayes
    • 1.4. Neural network models (supervised)
      • 1.4.1. Multi-layer Perceptron
      • 1.4.2. Classification
  • 2. Unsupervised learning
    • 2.1. Gaussian mixture models
      • 2.1.1. Gaussian Mixture
      • 2.1.2. The Dirichlet Process
Next Previous

© Copyright 2018 - 2019, pymc-learn Developers Team (BSD License) Revision 26d33ddb.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
Downloads
pdf
htmlzip
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.